
3/24/2009

1

Kai Tödter, Siemens Corporate Technology
Benjamin Pasero, IBM Rational

Download the Tutorial Material from
http://max-server.myftp.org/mp3m/
download/mp3m-downloads.html

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Demo: MP3 Manager
 A modular component architecture 
 Loose coupling of views and editors 
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding 
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 23/24/2009



3/24/2009

2

 Open Source
 Licensed under EPL
 Project Goal

 Provide show cases and best practices for many 
common use cases in RCP based applications

 Project Homepage

 http://max-server.myftp.org/trac/mp3m

 Anonymous svn access

 Trac wiki and issue tracking
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 Every complicated application has to be open 
for extension

 Generally good practice

 Better integration with other technologies

 More business opportunities

 Way to avoid “proprietary closed application” 
FUD (Fear, Uncertainty & Doubt)
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 Two approaches:

 Extensible applications

▪ E.g. Photoshop, MS Office, Mozilla

▪ Full size application core
with extension interface

 Extension based platforms

▪ i.e. Emacs, Auto CAD, Eclipse

▪ Minimalistic runtime,
that includes extension mechanism
▪ High level language

▪ Extension points mechanism
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 Application core acts as a container for 
extensions

 All functionality is implemented inside 
extension modules

 In case of Eclipse those are Plug-ins (Bundles)

 Advantages

 More open and transparent

▪ Core functionality developers and those who extend 
applications share same programming approach

▪ Easy to replace functionality
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 Two ways for Eclipse based applications:

 Extension registry 

 OSGi Services (whiteboard pattern)

 First one is standard in case of Eclipse
 What to choose depends on actual 

requirements and use cases
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 Do not hesitate to define own application 
specific extension points

 Use your own extension points

 Avoid “backdoors”

 Put some effort into documenting extension 
points

 This will help contributors a lot!

 Take care of compatibility

 Extension point definitions are contracts between 
you and those who extend. Respect them!
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 OSGi => modules for the Java platform

 Highly dynamic and flexible

 Loose coupling of Java modules

 Modular Component Architecture, based on:

 OSGi Bundles (= Eclipse Plug-ins)

 Eclipse Features

▪ For deployment options

▪ For product lines

▪ For different customer brandings

▪ For different platforms
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 Open questions:

 What should be the size of a Bundle?

 What functionality should be provided by a 
Bundle?

 When to separate functionality into different 
Bundles?

 How to organize Features?
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 It depends…
 If you don’t have much experience:

 Start monolithic, then

 Separate functionality into different Bundles

▪ If it is a self-contained block
▪ e.g. domain model, Help, Views, Editors

▪ If it has the potential of reuse
▪ e.g. Update, Views, Editors

▪ If it should be updated separately

 Separate core and UI functionality into different 
Bundles
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 These suggestions are not always the best 
solution, but might help to get started:
 Plug-ins which are providing the basic 

functionality of your RCP application should be 
grouped in their own Feature

 Plug-ins with additional / optional functionality 
should be grouped into separate Features
▪ E.g. create a separate Help Feature (see bug 202160, 

resolved in Eclipse 3.4 )

 Create different Features for different product 
brandings
▪ Create the .product configuration in the Feature project
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 Through its Plug-in architecture RCP lets you:

 Decompose your code into loosely coupled units

 Extend (and update) your product incrementally

 Enforce contracts between groups in your 
organization

 Play nicely with components from other vendors

 Allow even customers to extend your product
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 Feature: com.siemens.ct.mp3m.feature.base 
 Plug-in: com.siemens.ct.mp3m
 Plug-in: com.siemens.ct.mp3m.model
 Plug-in: com.siemens.ct.mp3m.ui.views.physical
 Plug-in: com.siemens.ct.mp3m.ui.views.logical
 Plug-in: com.siemens.ct.mp3m.ui.editors.id3.databinding
 Plug-in: de.ueberdosis.mp3info (third party ID3 tag library)

 Feature: com.siemens.ct.mp3m.feature.branding.blue
 Plug-in: com.siemens.ct.mp3m.branding.bue

 Feature: com.siemens.ct.mp3m.feature.player
 Plug-in: net.javazoom.jlayer (third party MP3 player library)
 Plug-in: com.siemens.ct.mp3m.ui.player
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 Let JFace viewers be SelectionProvider, so 
other views can deal with selections not 
knowing the selection origin

 Example:

treeViewer = new TreeViewer(parent, SWT.BORDER |  

SWT.V_SCROLL);
getSite().setSelectionProvider(treeViewer);
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 ViewParts that should react on selections just

 Implement ISelectionListener:

public void selectionChanged(IWorkbenchPart sourcePart, 

ISelection selection) {

// we ignore our own selections

if (sourcePart != this) {

// do something with the selection

}

}

 Register themselves as selection listener:

getSite().getWorkbenchWindow().getSelectionService().

addSelectionListener(this);
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 If you reuse the org.eclipse.ui.editors 
extension point, use the “extension” attribute
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static public IEditorPart[] getMp3Editors() {

IConfigurationElement[] editors = Platform.getExtensionRegistry()

.getConfigurationElementsFor("org.eclipse.ui", "editors");

ArrayList<IEditorPart> editorParts =

new ArrayList<IEditorPart>();

for (IConfigurationElement editor : editors) {

try {

String extensions = editor.getAttribute("extensions");

if ("mp3".equals(extensions)) {

IEditorPart editorPart = (IEditorPart) editor

.createExecutableExtension("class");

// …

}

} catch (CoreException e) {

…
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class Mp3DoubleclickListener implements IDoubleClickListener {

public void doubleClick(DoubleClickEvent event) {

// …

if (path != null) {

PathEditorInput pathEditorInput =

new PathEditorInput(path);

String editorId = EditorFactory.getDefaultMp3EditorId();

try {

getViewSite().getWorkbenchWindow().getActivePage().

openEditor(pathEditorInput, editorId);

} catch (Exception e) {

LogUtil.logError("com.siemens.ct.mp3m.ui.views.physical",

"cannot open editor with id: " + editorId);

}

}

}

}
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 Language specific strings
 Layout of data, like numbers, dates, etc.
 Colors
 Symbols, pictures, icons

 We focus on language specific strings and 
images
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 Strings in application code
 Strings in plug-in XML contributions
 Strings/images in feature brandings
 Strings/images in product brandings

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 243/24/2009



3/24/2009

13

 Eclipse provides two mechanisms for string 
externalization:

 Standard Java ResourceBundles

 Eclipse way

▪ Only present in the wizard if the project build path 
contains the org.eclipse.osgi.util.NLS class

▪ Usually available in all plug-ins that have a dependency 
to org.eclipse.core.runtime

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 253/24/2009

package com.siemens.ct.test.internationalization;

public class Test {

public Test() {

String color = "Color";

String help = "Help";

}

}
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public class Messages {

private static final String BUNDLE_NAME =     

“test.internationalization.messages"; //$NON-NLS-1$

private static final ResourceBundle RESOURCE_BUNDLE = 

ResourceBundle.getBundle(BUNDLE_NAME);

private Messages() {}

public static String getString(String key) {

try {

return RESOURCE_BUNDLE.getString(key);

} catch (MissingResourceException e) {

return '!' + key + '!';

}

}

}
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import org.eclipse.osgi.util.NLS;

public class Messages extends NLS {

private static final String BUNDLE_NAME =   

“test.internationalization.messages"; //$NON-NLS-1$

public static String Test_color;

public static String Test_help;

static {

// initialize resource bundle

NLS.initializeMessages(BUNDLE_NAME, Messages.class);

}

private Messages() {

}

}
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 Standard way:
public class Test {

public Test() {

String color = Messages.getString("Test.color"); //$NON-NLS-1$

String help = Messages.getString("Test.help"); //$NON-NLS-1$

}

}

 Eclipse way:
public class Test {

public Test() {

String color = Messages.Test_color;

String help = Messages.Test_help;

}

}
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 Standard way:

Test.color=Color

Test.help=Help

 Eclipse way:
Test_color=Color

Test_help=Help
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 Faster access and initialization
 Better memory footprint
 Easy detection of

 Missing or unused keys

 Typos in keys

 Drawback

 There are now 2 files to maintain and to keep in 
sync (messages.properties and the Java file)

 More info at 
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/
reference/ref-wizard-externalize-strings.htm
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 In plugin.xml

 Use localized strings for every attribute that is 
presented to the end user

 Use the notion “%key” as attribute value

▪ E.g. name="%FileSystemView.title“

 Provide plugin_<locale>.properties for every 
locale you want to support

 E.g. plugin_de.properties

 Use the keys and provide translations

 E.g. FileSystemView.title=Datei-System View
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 … will be covered later in the Branding part
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 You could use a plug-in fragment to separate 
all localization files from the “English” plug-in

 At runtime, all the files will be merged with 
the host plug-in
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© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 353/24/2009

 Restart the workbench via 
PlatformUI.getWorkbench().restart()

 No API to specify parameters*, some issues with 
EXIT.RELAUNCH and “eclipse.exitdata” property

 Workaround:

 Modify <product>.ini file: Add/modify two lines:

▪ -nl

▪ <locale>, e.g. de

 Benefit: Makes the language change persistent

 Drawback: Does not work with IDE launcher
*See Bug 222023
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 In object-oriented software systems, an adapter 
simply adapts (converts) an object of type A to 
another object of relevant type B

 Eclipse provides the interface IAdaptable to 
address the adaption of an object:
public interface IAdaptable {

public Object getAdapter(Class adapter);

}

 Since model objects should not depend on Eclipse, 
Adapter-Factories can adapt all objects. They 
don’ have to implement IAdaptable…

 How does this work?

39© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Every JFace viewer relies on

 A LabelProvider

 A ContentProvider

 Example: Tree

 A class implementing ITreeContentProvider

 A class extending LabelProvider
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private final Object[] EMPTY = new Object[] {};

public Object[] getChildren(Object parent) {

if (parent instanceof Artist) {

return ((Artist) parent).getAlbums().toArray();

} else if (parent instanceof Album) {

return ((Album) parent).getSongs().toArray();

}

// Songs have no children

return EMPTY;

}

A ContentProvider has to deal with all kinds of
domain objects that built up the tree structure
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 An AdapterFactory can be registered with the 
platform

 The factory provides adapters for a given base class

 This base class does NOT have to implement IAdaptable

 Often, domain specific classes could be handled by 
IWorkBenchAdapters

 IWorkbenchAdapter is a combination of Label & 
ContentProvider
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treeViewer = new TreeViewer(parent, SWT.BORDER | 

SWT.MULTI | SWT.V_SCROLL);

IAdapterFactory adapterFactory = new AdapterFactory();

Platform.getAdapterManager().registerAdapters(

adapterFactory, Mp3File.class);

treeViewer.setLabelProvider(

new WorkbenchLabelProvider());

treeViewer.setContentProvider(
new BaseWorkbenchContentProvider());
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private IWorkbenchAdapter entryAdapter = new IWorkbenchAdapter() {

public Object getParent(Object o) {

return ((Mp3File) o).getDirectory();

}

public String getLabel(Object o) {

Mp3File entry = ((Mp3File) o);

return entry.getName();

}

public ImageDescriptor getImageDescriptor(Object object) {

return AbstractUIPlugin.imageDescriptorFromPlugin(ID, 

IImageKeys.MP3);

}

public Object[] getChildren(Object o) {

return new Object[0];

}

};
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public Object getAdapter(Object adaptableObject, Class adapterType) {

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3Directory)

return directoryAdapter;

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3File)

return entryAdapter;

if (adapterType == IPropertySource.class

&& adaptableObject instanceof Mp3File) 

return new Mp3PropertySource((Mp3File)adaptableObject); 

return null;

}

public Class[] getAdapterList() {

return new Class[] { IWorkbenchAdapter.class, IPropertySource.class

};

}
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 Loose coupling of domain objects with UI 
related objects

 No need to explicitly write ContentProviders
and LabelProviders

 Reuse of

 WorkbenchLabelProvider

 BaseWorkbenchContentProvider

 AdapterFactory might provide several 
different adapters like IWorkbenchAdapter or 
IPropertySource
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 Create a new project 
com.siemens.ct.mp3m.mytreeview

 Reuse the tree model from the project 
com.siemens.ct.mp3m.model

 Implement a Mp3AdapterFactory with 

adapters for all tree model elements
 Create a JFace TreeViewer and test both the 
AdapterFactory approach vs. the 
standard Label- and ContentProvider
mechanism
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 Create a IPropertySource
implementation for Mp3File

 Hint: Take a look at Mp3PropertySource

 Add an adapter for IPropertySource and 
Mp3File to your Mp3AdapterFactory

 Add the standard Properties View to the 
contacts manager application

 Hint: Add the project org.eclipse.ui.views to 
your mp3m.product launch configuration
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 Challenges in many applications:

 Huge amount of domain specific data has to be 
displayed in a tree or table

 Data for the whole tree or table needs either too 
much memory or takes too much time to create 
upfront (or even both)
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 Solution:

 Create model data and tree/table items only 
when they are really needed (e.g. displayed)

 Keep only the part of the data in memory that is 
currently displayed 

 Free model data und tree/table items if they are 
no longer displayed
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public void createPartControl(Composite parent) {

TableViewer tableViewer = 

new TableViewer(parent, SWT.VIRTUAL | SWT.BORDER |

SWT.V_SCROLL);

Table table = tableViewer.getTable();

// …

TableColumn column = new TableColumn(table, SWT.NONE, 0);

column.setText("No");

column.setWidth(50);

tableViewer.setItemCount(100000);

tableViewer.setContentProvider(new LazyContentProvider());

tableViewer.setLabelProvider(new TableLabelProvider());

tableViewer.setUseHashlookup(true);

tableViewer.setInput(null);

}
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class LazyContentProvider implements ILazyContentProvider {

public void inputChanged(Viewer viewer, Object oldInput,

Object newInput) {

this.viewer = (TableViewer) viewer;

this.viewer.getTable().addListener(SWT.SetData, new Listener() {

public void handleEvent(Event event) {

TableItem item = (TableItem) event.item;

// compute top and bottom index and clear portions 

// of the table to clean up memory

}

}

}

public void updateElement(int index) {

// get mp3Info from domain model

viewer.replace(new Song(index, mp3Info), index);

}

}
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public void createPartControl(Composite parent) {

treeViewer = new TreeViewer(parent, SWT.VIRTUAL);

treeViewer.setLabelProvider(new WorkbenchLabelProvider());

treeViewer.setContentProvider(

new TreeContentProvider(treeViewer));

treeViewer.setUseHashlookup(true);

Mp3Directory root = new Mp3Directory("root");

// Some initializations…

treeViewer.setInput(root);

treeViewer.setChildCount(root, roots.length);

}
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class TreeContentProvider implements ILazyTreeContentProvider {

public void updateElement(Object parent, int index) {

Mp3Directory parentDir = (Mp3Directory) parent;

Mp3File mp3File = parentDir.getMp3Files()[index];

if (mp3File instanceof Mp3Directory) {

PrefetchModelJob job = new PrefetchModelJob(

"Update Model", parentDir, index,

(Mp3Directory) mp3File);

job.schedule();

}

treeViewer.replace(parent, index, mp3File);

treeViewer.setChildCount(mp3File, 0);

}

}
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 Create a virtual table to display a huge list of 
mp3 files

 Hint: replicate the existing mp3s in the table

 Implement a Content Provider that 
implements ILazyContent-Provider

 Implement the updateElement() method 
properly
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 Implement the handleEvent() method in your 
LazyContent-Provider to clean up table 
elements that are no longer needed

 Hint: Take a look at the class VirtualTableView in 
project com.siemens.ct.mp3m.ui.views.logical.
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 Product branding gives your application a 
specific high-level visual appearance

 Can be used for

 Vendor-specific appearance

 Product families

 Various different editions of the same software 
basis
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 Launcher’s icon
 Splash screen with progress bar
 Title bar text
 The image the operating system associates 

with the product
 About dialog image
 About dialog text
 UI presentation style (see Presentation part)
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 Create a new product configuration
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 You can create separate branding plug-ins

 Including product configuration

 Including all branding resources and information
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Blue Branding Orange Branding
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Approach 1:
1. Create a feature for each branding
2. Include all plug-ins, that define your product 

in that feature
3. Place the product configuration in that 

feature
4. In the product configuration include only the 

branding feature!
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Approach 2:
1. Create a base feature with your application 

base plug-ins
2. Create a separate feature that contains only 

the specific branding plug-in
3. Include the application feature in your 

branding feature

 Use the “Included Features” tab in the feature.xml 
editor

4. In the product configuration include only the 
branding feature!
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 Useful for internationalize product versions

 Splash screen, images and “about text”

 Can easily be implemented using plug-in 
fragments
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 Create a file structure in your localized 
branding plug-in:

 nl/<locale>/splash.bmp

 When deploying, use a customized config.ini 
file, and modify:

 osgi.splashPath=
platform:/base/plugins/<original branding plug-in> , 
platform:/base/plugins/<localized branding plug-in>

 Then both plug-ins are in the splash screen search 
path at startup
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 Since Eclipse 3.3 there is a new 
extension point org.eclipse.ui.splashHandlers

 Available templates

▪ A simulated log-in session

▪ An embedded HTML browser

▪ A dynamic set of image contributions

 Create a SplashHandler Java class

 Extend BasicSplashHandler

 Take a Look at org.eclipse.ui.internal.splash.
EclipseSplashHandler
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 Every feature can refer to a branding plug-in

 The feature’s branding data are in the files
about.ini and about.properties

 For internationalized feature brandings 
create plug-in fragments of the branding 
plug-in

 Provide the directory structure nl/<locale>

▪ E.g. nl/de

 Provide both about.ini and about.properties for 
each locale
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 about.ini:

aboutText=%blurb

featureImage=icon32x32.gif

 about.properties:
blurb=MP3 Manager (English)\n\

\n\

Version: {featureVersion} \n\

\n\

(c) Copyright Siemens AG 2008.  All rights reserved.
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 nl/de/about.ini:

aboutText=%blurb

featureImage=icon32x32_de.gif

 nl/de/about.properties:
blurb=MP3 Manager (Deutsch)\n\

\n\

Version: {featureVersion}\n\

\n\

(c) Copyright Siemens AG 2008.  Alle Rechte vorbehalten.
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© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

feature brandings in the About dialog

773/24/2009
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 Launch the MP3 manager with

 Blue branding

 Orange branding

 Blue branding in German
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 Demo: MP3 Manager
 A modular component architecture 
 Loose coupling of views and editors 
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding 
 Presentation API
 p2, the new provisioning
 Headless build
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 Looks great 
 But: Looks a bit like the Eclipse IDE
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 Looks differently compared to the Eclipse IDE
 Customized for better application usability
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 Usually RCP apps contain views and editors
 These views and editors are called parts
 The presentation customizes the layout and 

Look&Feel of areas containing one or more 
parts

 Drawback: Not the whole application's look & feel 
can be customized with the Presentations API

 No Look & Feel skinning like in Swing

 Presentation can provide custom widgets and 
behavior
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 Control layout and visibility of

 Parts

 Menus  & Toolbars

 Drag&Drop regions

 Create the Look & Feel for part stacks

 Tabs

 Title

 Buttons (Close, Maximize, Minimize)

 Borders
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 Go to “General/Appearance” in the 
Preferences

 Choose a presentation (e.g. “2.1 Style”)
 Restart Eclipse
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 Create .ini file with content:
org.eclipse.ui/presentationFactoryId=<ID>

 ID is the presentation id, e.g.:
org.eclipse.ui.internal.r21presentationFactory

 Specify program arguments:
-plugincustomization <presentation.ini file>

 Or create default .ini file:
plugin_customization.ini

 Advantage: Will be detected by the launcher 
automatically
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 A presentation that only displays a part

 No Borders, Tabs, Menus

 Only the top part of the stack is shown
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 Create a presentation factory
 Extend org.eclipse.ui.presentationFactories
 Provide class, id and name of your 

presentation

<extension

point= "org.eclipse.ui.presentationFactories" >

<factory

class="presentation.MinimalPresentationFactory"

id="presentation.MinimalPresentationFactory"

name="Minimal Presentation"/>

</extension>
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public abstract class AbstractPresentationFactory {

public abstract StackPresentation createEditorPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createViewPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createStandaloneViewPresentation(
Composite parent, IStackPresentationSite site,
boolean showTitle);

// …
}
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public class MinimalPresentationFactory

extends AbstractPresentationFactory {

public StackPresentation createEditorPresentation(

Composite parent,  IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createViewPresentation(

Composite parent, IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createStandaloneViewPresentation(

Composite parent, IStackPresentationSite site,

boolean showTitle) {

return new MinimalPresentation(parent, site);

}

}
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 Widget hierarchy

 The parts are not children of the presentation!

 Parts and part toolbars are parented by the 
workbench

Allows moving parts between stacks

 A presentation should not use the part’s 
control

 It should use instead: IPresentablePart.setBounds() 
and IPresentablePart.setVisible()
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 For details, checkout:

 Eclipse CVS repository

 Host: dev.eclipse.org

 CVS-Root: /cvsroot/eclipse

 Server: pserver

 Project: org.eclipse.ui.examples.presentation

 User: anonymous

 eclipsecon2005-presentationsAPI.ppt slides are 
included 
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 Useful for:

 Corporate design or Look&Feel

 Product branding & product families

 Application usability

 Think of

 Drawing borders, visible focus

 Buttons (Close, Minimize, Maximize)

 Tab Look & Feel

 Menus (System, View and Part)
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Design Goals:
 Title area with no icons, but gradient fill
 Image-based close button for closable parts
 Button-like tabs, with whole part width

 Different gradient fills for selections

 Roll-over effect

 Better usability for MP3 Manager application

 Since we have a title area, tabs should only be 
visible if there’s more than one tab
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 Start the MP3 Manager with

 Default presentation

▪ Hint: presentation id = 
org.eclipse.ui.presentations.default

 MP3M presentation

 Eclipse 3.0 presentation

▪ Hint: presentation id = org.eclipse.ui.presentations.r30
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 Demo: MP3 Manager
 A modular component architecture 
 Loose coupling of views and editors 
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding 
 Presentation API
 p2, the new provisioning
 Headless build
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 P2 is the new Eclipse provisioning system
 Introduced with version 3.4
 Replaced the old update manager
 Fixes many of the update manager’s flaws
 Has many new features (see next slides)
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 Cleaner end-user workflows
 Faster downloads through multi-threadding
 Installers can be run as a regular Java 

application or using Java Web Start
 Can manage complete installation

(.exe, .ini, etc.)
 Can manage and update an Eclipse/RCP 

instance without running it

99© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Automatically picks the best available mirror
 Automatic retry of downloads
 Sharing of plug-ins across multiple eclipse 

instances (bundle pooling)
 Easy creation of headless and custom update 

user interfaces
 Validates plug-in inter-dependencies
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 Common Use Cases:

 Install an RCP application from a p2 repository

 An RCP application uses p2 metadata and artifact 
repositories to update itself
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Recipe for p2-enabling the mail demo:

1. Create the mail demo (project p2-maildemo)
2. Create a product configuration p2-

maildemo.product
3. Add 3 plug-ins to both launcher and product 

configuration (and added required plug-ins)
- org.eclipse.equinox.p2.exemplarysetup
- org.eclipse.equinox.p2.ui.sdk
- org.eclipse.equinox.simpleconfigurator.manipulator
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5. To get the final update work in the installed 
product, it is also necessary to include the 
following 3 plug-ins with dependencies in the 
product configuration:
- org.eclipse.ecf.provider.filetransfer
- org.eclipse.equinox.p2.touchpoint.eclipse
- org.eclipse.equinox.p2.touchpoint.natives

6. Export the product and the metadata/artifact 
repositories to c:/java/RCP/p2-maildemo
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7. Use the director app to install the mail demo from the repository, 
with the following Program arguments:
-application org.eclipse.equinox.p2.director.app.application
-metadataRepository file:c:/java/RCP/p2-maildemo/repository
-artifactRepository file:c:/java/RCP/p2-maildemo/repository
-installIU p2_maildemo.product
-version 1.0.0
-destination c:/java/RCP/p2-maildemo/install
-profile MaildemoProfile
-bundlepool c:/java/RCP/p2-maildemo/install
-profileProperties org.eclipse.update.install.features=true
-p2.os win32
-p2.ws win32
-p2.arch x86
-roaming
-consoleLog

VM arguments:
-Declipse.p2.data.area=c:/java/RCP/p2-maildemo/install/p2
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8. Start the installed mail demo in c:/java/RCP/p2-
maildemo/install

9. Select Help/Software Updates…:
Shows the P2 UI with installed product in 
version 1.0.0

10. Now you want to create a new version 1.0.1 of 
the product and update the installed version 
1.0.0:

11. Update main mail demo plug-in to version 1.0.1
12. Update product version to 1.0.1
13. Export the new product version 1.0.1 in the 

SAME location, to update the metadata/artifact 
repositories
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14. But, the installed app 1.0.0 does not find any 
updates... So, add the repository 
c:/java/RCP/p2-maildemo/repository 
manually as a new site => the new version 
1.0.1 is displayed and ready for update.

15. When you want to install the update, the P2 
dialog tells you correctly: “RCP Product is 
already installed, so an update will be 
performed instead.”

16. And now, when you click finish, the new 
version will be installed properly!!!
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 P2 Eclipse Wiki:
http://wiki.eclipse.org/Equinox_p2

 Equinox/p2/Adding Self-Update to an RCP 
Application:
http://wiki.eclipse.org/Equinox/p2/Adding_Se
lf-Update_to_an_RCP_Application

 Kai Tödter’s blog about p2-enabling of an 
RCP application:
http://toedter.com/blog/?p=27
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 Take a look at the mp3m.product in the 
project com.siemens.ct.mp3m.feature.blue 
regarding the dependencies

 Deploy the product and create p2 
repositories

 Install the MP3 Manager product using the 
director application

 Hint: Use the preconfigured launcher “MP3 
Manager Director”

 Add a local p2 repository for update
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 Implement new functionality

 Update bundle version

 Update feature version

 Update product version

 Re-deploy the product to the same location
 Update your previously installed MP3 

Manager
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 Demo: MP3 Manager
 A modular component architecture 
 Loose coupling of views and editors 
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding 
 Presentation API
 p2, the new provisioning
 Headless build
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 PDE build provides the infrastructure for a 
headless RCP build

 Many templates and scripts of PDE build can 
be re-used for your own headless RCP build

 Unfortunately, setting up an headless RCP 
build is not trivial

3/24/2009 112© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.



3/24/2009

57

3/24/2009 113© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

RCP App

Features

Plug-ins

build.properties

Ant Script 
Generator

Ant Scripts

customTargets.xml

Features

Eclipse Platform

Features

Plug-ins

Plug-ins

Products

P2 Repositories

Build Config OutputPDE BuildInput

 The build.properties file specifies common 
properties needed for the build:

 product: the location of the product configuration file

 baseLocation: the location of an eclipse install 
containing all the pre-built features and plug-ins that 
the product requires in features/ and plugins/ 
subdirectories. The RCP delta pack is mandatory!

 buildDirectory: directory the build will take place in

 configs: list the configurations for which you want 
your product to be built

 archivePrefix: the name of the directory of your 
product once installed on disk
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 The custom targets are hooks that are 
invoked during the build by the main script.

 Examples are:

 clean

 prefetch, postfetch

 preGenerate, postGenerate

 preProcess, postProcess

 preAssemble, postAssemble

 prePackage, postPackage

 test
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 Create a new plug-in <namespace>.build for the 
build configuration files

 Copy the files build.properties and 
customTargets.xml from 
plugins/org.eclipse.pde.build\
<version>/templates/headless-build/ into build/

 Edit build/build.properties.

 product

 archivePrefix

 buildDirectory

 baseLocation

 baseos, basews and basearch
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 Precondition for the build: If plug-ins are not fetched 
from CVS/Subversion, source plug-ins and features 
must be located in the following structure.

buildDirectory/

features/

feature-1/

feature-2/

...

plugins/

plugin-1/

plugin-2/

...
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 To run the build, execute

java -jar <eclipse>/plugins/\
org.eclipse.equinox.launcher_<version>.jar

-application org.eclipse.ant.core.antRunner

-buildfile <eclipse>/plugins/org.eclipse.pde.build_\
<version>/scripts/productBuild/productBuild.xml
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 Add the following properties to the 
build.properties:

generate.p2.metadata = true

p2.metadata.repo=file:${buildDirectory}/repo

p2.artifact.repo=file:${buildDirectory}/repo

p2.flavor=tooling

p2.publish.artifacts=true

mp3mVersion=3.4.1
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 Edit/Add the following targets to the 
customTargets.xml:

 postBuild

 runDirector
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<target name="postBuild">

<antcall target="gatherLogs" />

<property file="${buildDirectory}/product.version"/>

<mkdir dir="${buildDirectory}/result/tmp" />

<antcall target="run.director">

<param name="p2.director.install.path"

value="${buildDirectory}/result/tmp/eclipse"/>

<param name="p2.os" value="win32"/>

<param name="p2.ws" value="win32"/>

<param name="p2.arch" value="x86"/>

<param name="p2.IU"

value="com.siemens.ct.mp3m.branding.blue.product" />

<param name="p2.version" value="${mp3mVersion}"/>

</antcall>

<zip destfile="${buildDirectory}/result/MP3M-p2-RCP-win32-${mp3mVersion}.zip"

basedir="${buildDirectory}/result/tmp" />

<delete dir="${buildDirectory}/result/tmp" />
</target>
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<target name="run.director">

<exec executable="${eclipseLocation}/eclipsec" failonerror="false" timeout="900000">

<arg line="-application org.eclipse.equinox.p2.director.app.application" />

<arg line="-nosplash" />

<arg line="--launcher.suppressErrors" />

<arg line="-consoleLog" />

<arg line="-flavor ${p2.flavor}" />

<arg line="-installIU ${p2.IU}" />

<arg line="-version ${p2.version}" /> 

<arg line="-p2.os ${p2.os}" /> 

<arg line="-p2.ws ${p2.ws}" />

<arg line="-p2.arch ${p2.arch}" />

<arg line="-roaming" />

<arg line="-profile MP3MProfile" />

<arg line="${p2.director.extraArgs}" />

<arg line="-metadataRepository ${p2.metadata.repo}" />

<arg line="-artifactRepository ${p2.artifact.repo}" />

<arg line="-destination ${p2.director.install.path}" />

<arg line="-bundlepool ${p2.director.install.path}" />

<arg line="-profileProperties org.eclipse.update.install.features=true" />

<arg line="-vmargs" />

<arg line="-Declipse.p2.data.area=${p2.director.install.path}/p2" />

</exec>

<!-- delete the metadata cache as well as the artifacts for unzipped bundles -->

<delete failonerror="false" includeEmptyDirs="true"

dir="${p2.director.install.path}/p2/org.eclipse.equinox.p2.core/cache" />
</target>
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 Install the RCP delta pack to your target 
platform

 Create a new project 
com.siemens.ct.mp3m.mybuild

 Create copy the files build.properties, 
customtargets.xml and build.xml from 
com.siemens.ct.mp3m.build

 Adopt build.properties to your environment
 Run the headless build
 Unzip and run the p2-ed MP3 Manager
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 http://help.eclipse.org/help32/index.jsp?topic
=/org.eclipse.pde.doc.user/guide/tasks/pde_p
roduct_build.htm

 Andrew Niefer’s blog how to integrate p2 into 
the build of an RCP application:
http://aniefer.blogspot.com/2008/06/exampl
e-headless-build-for-rcp-product.html
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 This work is licensed under the Creative Commons 
Attribution-Noncommercial-No Derivative Works 
3.0 Germany License

 See http://creativecommons.org/licenses/by-nc-
nd/3.0/de/deed.en_US

 Some slides are based on material of the Eclipse Training 
Alliance, see http://www.eclipse-training.net
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