
3/24/2009

1

Kai Tödter, Siemens Corporate Technology
Benjamin Pasero, IBM Rational

Download the Tutorial Material from
http://max-server.myftp.org/mp3m/
download/mp3m-downloads.html

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 23/24/2009

3/24/2009

2

 Open Source
 Licensed under EPL
 Project Goal

 Provide show cases and best practices for many
common use cases in RCP based applications

 Project Homepage

 http://max-server.myftp.org/trac/mp3m

 Anonymous svn access

 Trac wiki and issue tracking

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 33/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 43/24/2009

http://max-server.myftp.org/trac/mp3m
http://max-server.myftp.org/trac/mp3m
http://max-server.myftp.org/trac/mp3m

3/24/2009

3

 Every complicated application has to be open
for extension

 Generally good practice

 Better integration with other technologies

 More business opportunities

 Way to avoid “proprietary closed application”
FUD (Fear, Uncertainty & Doubt)

53/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Two approaches:

 Extensible applications

▪ E.g. Photoshop, MS Office, Mozilla

▪ Full size application core
with extension interface

 Extension based platforms

▪ i.e. Emacs, Auto CAD, Eclipse

▪ Minimalistic runtime,
that includes extension mechanism
▪ High level language

▪ Extension points mechanism

3/24/2009 6© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

4

 Application core acts as a container for
extensions

 All functionality is implemented inside
extension modules

 In case of Eclipse those are Plug-ins (Bundles)

 Advantages

 More open and transparent

▪ Core functionality developers and those who extend
applications share same programming approach

▪ Easy to replace functionality

73/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Two ways for Eclipse based applications:

 Extension registry

 OSGi Services (whiteboard pattern)

 First one is standard in case of Eclipse
 What to choose depends on actual

requirements and use cases

83/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

5

 Do not hesitate to define own application
specific extension points

 Use your own extension points

 Avoid “backdoors”

 Put some effort into documenting extension
points

 This will help contributors a lot!

 Take care of compatibility

 Extension point definitions are contracts between
you and those who extend. Respect them!

93/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 OSGi => modules for the Java platform

 Highly dynamic and flexible

 Loose coupling of Java modules

 Modular Component Architecture, based on:

 OSGi Bundles (= Eclipse Plug-ins)

 Eclipse Features

▪ For deployment options

▪ For product lines

▪ For different customer brandings

▪ For different platforms

103/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

6

 Open questions:

 What should be the size of a Bundle?

 What functionality should be provided by a
Bundle?

 When to separate functionality into different
Bundles?

 How to organize Features?

113/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 It depends…
 If you don’t have much experience:

 Start monolithic, then

 Separate functionality into different Bundles

▪ If it is a self-contained block
▪ e.g. domain model, Help, Views, Editors

▪ If it has the potential of reuse
▪ e.g. Update, Views, Editors

▪ If it should be updated separately

 Separate core and UI functionality into different
Bundles

123/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

7

 These suggestions are not always the best
solution, but might help to get started:
 Plug-ins which are providing the basic

functionality of your RCP application should be
grouped in their own Feature

 Plug-ins with additional / optional functionality
should be grouped into separate Features
▪ E.g. create a separate Help Feature (see bug 202160,

resolved in Eclipse 3.4)

 Create different Features for different product
brandings
▪ Create the .product configuration in the Feature project

133/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Through its Plug-in architecture RCP lets you:

 Decompose your code into loosely coupled units

 Extend (and update) your product incrementally

 Enforce contracts between groups in your
organization

 Play nicely with components from other vendors

 Allow even customers to extend your product

143/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

8

 Feature: com.siemens.ct.mp3m.feature.base
 Plug-in: com.siemens.ct.mp3m
 Plug-in: com.siemens.ct.mp3m.model
 Plug-in: com.siemens.ct.mp3m.ui.views.physical
 Plug-in: com.siemens.ct.mp3m.ui.views.logical
 Plug-in: com.siemens.ct.mp3m.ui.editors.id3.databinding
 Plug-in: de.ueberdosis.mp3info (third party ID3 tag library)

 Feature: com.siemens.ct.mp3m.feature.branding.blue
 Plug-in: com.siemens.ct.mp3m.branding.bue

 Feature: com.siemens.ct.mp3m.feature.player
 Plug-in: net.javazoom.jlayer (third party MP3 player library)
 Plug-in: com.siemens.ct.mp3m.ui.player

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 153/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 163/24/2009

3/24/2009

9

 Let JFace viewers be SelectionProvider, so
other views can deal with selections not
knowing the selection origin

 Example:

treeViewer = new TreeViewer(parent, SWT.BORDER |

SWT.V_SCROLL);
getSite().setSelectionProvider(treeViewer);

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 173/24/2009

 ViewParts that should react on selections just

 Implement ISelectionListener:

public void selectionChanged(IWorkbenchPart sourcePart,

ISelection selection) {

// we ignore our own selections

if (sourcePart != this) {

// do something with the selection

}

}

 Register themselves as selection listener:

getSite().getWorkbenchWindow().getSelectionService().

addSelectionListener(this);

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 183/24/2009

3/24/2009

10

 If you reuse the org.eclipse.ui.editors
extension point, use the “extension” attribute

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 193/24/2009

static public IEditorPart[] getMp3Editors() {

IConfigurationElement[] editors = Platform.getExtensionRegistry()

.getConfigurationElementsFor("org.eclipse.ui", "editors");

ArrayList<IEditorPart> editorParts =

new ArrayList<IEditorPart>();

for (IConfigurationElement editor : editors) {

try {

String extensions = editor.getAttribute("extensions");

if ("mp3".equals(extensions)) {

IEditorPart editorPart = (IEditorPart) editor

.createExecutableExtension("class");

// …

}

} catch (CoreException e) {

…

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 203/24/2009

3/24/2009

11

class Mp3DoubleclickListener implements IDoubleClickListener {

public void doubleClick(DoubleClickEvent event) {

// …

if (path != null) {

PathEditorInput pathEditorInput =

new PathEditorInput(path);

String editorId = EditorFactory.getDefaultMp3EditorId();

try {

getViewSite().getWorkbenchWindow().getActivePage().

openEditor(pathEditorInput, editorId);

} catch (Exception e) {

LogUtil.logError("com.siemens.ct.mp3m.ui.views.physical",

"cannot open editor with id: " + editorId);

}

}

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 213/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 223/24/2009

3/24/2009

12

 Language specific strings
 Layout of data, like numbers, dates, etc.
 Colors
 Symbols, pictures, icons

 We focus on language specific strings and
images

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 233/24/2009

 Strings in application code
 Strings in plug-in XML contributions
 Strings/images in feature brandings
 Strings/images in product brandings

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 243/24/2009

3/24/2009

13

 Eclipse provides two mechanisms for string
externalization:

 Standard Java ResourceBundles

 Eclipse way

▪ Only present in the wizard if the project build path
contains the org.eclipse.osgi.util.NLS class

▪ Usually available in all plug-ins that have a dependency
to org.eclipse.core.runtime

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 253/24/2009

package com.siemens.ct.test.internationalization;

public class Test {

public Test() {

String color = "Color";

String help = "Help";

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 263/24/2009

3/24/2009

14

public class Messages {

private static final String BUNDLE_NAME =

“test.internationalization.messages"; //$NON-NLS-1$

private static final ResourceBundle RESOURCE_BUNDLE =

ResourceBundle.getBundle(BUNDLE_NAME);

private Messages() {}

public static String getString(String key) {

try {

return RESOURCE_BUNDLE.getString(key);

} catch (MissingResourceException e) {

return '!' + key + '!';

}

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 273/24/2009

import org.eclipse.osgi.util.NLS;

public class Messages extends NLS {

private static final String BUNDLE_NAME =

“test.internationalization.messages"; //$NON-NLS-1$

public static String Test_color;

public static String Test_help;

static {

// initialize resource bundle

NLS.initializeMessages(BUNDLE_NAME, Messages.class);

}

private Messages() {

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 283/24/2009

3/24/2009

15

 Standard way:
public class Test {

public Test() {

String color = Messages.getString("Test.color"); //$NON-NLS-1$

String help = Messages.getString("Test.help"); //$NON-NLS-1$

}

}

 Eclipse way:
public class Test {

public Test() {

String color = Messages.Test_color;

String help = Messages.Test_help;

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 293/24/2009

 Standard way:

Test.color=Color

Test.help=Help

 Eclipse way:
Test_color=Color

Test_help=Help

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 303/24/2009

3/24/2009

16

 Faster access and initialization
 Better memory footprint
 Easy detection of

 Missing or unused keys

 Typos in keys

 Drawback

 There are now 2 files to maintain and to keep in
sync (messages.properties and the Java file)

 More info at
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/
reference/ref-wizard-externalize-strings.htm

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 313/24/2009

 In plugin.xml

 Use localized strings for every attribute that is
presented to the end user

 Use the notion “%key” as attribute value

▪ E.g. name="%FileSystemView.title“

 Provide plugin_<locale>.properties for every
locale you want to support

 E.g. plugin_de.properties

 Use the keys and provide translations

 E.g. FileSystemView.title=Datei-System View

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 323/24/2009

http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm
http://help.eclipse.org/help31/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-wizard-externalize-strings.htm

3/24/2009

17

 … will be covered later in the Branding part

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 333/24/2009

 You could use a plug-in fragment to separate
all localization files from the “English” plug-in

 At runtime, all the files will be merged with
the host plug-in

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 343/24/2009

3/24/2009

18

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 353/24/2009

 Restart the workbench via
PlatformUI.getWorkbench().restart()

 No API to specify parameters*, some issues with
EXIT.RELAUNCH and “eclipse.exitdata” property

 Workaround:

 Modify <product>.ini file: Add/modify two lines:

▪ -nl

▪ <locale>, e.g. de

 Benefit: Makes the language change persistent

 Drawback: Does not work with IDE launcher
*See Bug 222023

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 363/24/2009

3/24/2009

19

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 373/24/2009

3/24/2009 38© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

20

 In object-oriented software systems, an adapter
simply adapts (converts) an object of type A to
another object of relevant type B

 Eclipse provides the interface IAdaptable to
address the adaption of an object:
public interface IAdaptable {

public Object getAdapter(Class adapter);

}

 Since model objects should not depend on Eclipse,
Adapter-Factories can adapt all objects. They
don’ have to implement IAdaptable…

 How does this work?

39© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Every JFace viewer relies on

 A LabelProvider

 A ContentProvider

 Example: Tree

 A class implementing ITreeContentProvider

 A class extending LabelProvider

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 403/24/2009

3/24/2009

21

private final Object[] EMPTY = new Object[] {};

public Object[] getChildren(Object parent) {

if (parent instanceof Artist) {

return ((Artist) parent).getAlbums().toArray();

} else if (parent instanceof Album) {

return ((Album) parent).getSongs().toArray();

}

// Songs have no children

return EMPTY;

}

A ContentProvider has to deal with all kinds of
domain objects that built up the tree structure

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 413/24/2009

 An AdapterFactory can be registered with the
platform

 The factory provides adapters for a given base class

 This base class does NOT have to implement IAdaptable

 Often, domain specific classes could be handled by
IWorkBenchAdapters

 IWorkbenchAdapter is a combination of Label &
ContentProvider

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 423/24/2009

3/24/2009

22

treeViewer = new TreeViewer(parent, SWT.BORDER |

SWT.MULTI | SWT.V_SCROLL);

IAdapterFactory adapterFactory = new AdapterFactory();

Platform.getAdapterManager().registerAdapters(

adapterFactory, Mp3File.class);

treeViewer.setLabelProvider(

new WorkbenchLabelProvider());

treeViewer.setContentProvider(
new BaseWorkbenchContentProvider());

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 433/24/2009

private IWorkbenchAdapter entryAdapter = new IWorkbenchAdapter() {

public Object getParent(Object o) {

return ((Mp3File) o).getDirectory();

}

public String getLabel(Object o) {

Mp3File entry = ((Mp3File) o);

return entry.getName();

}

public ImageDescriptor getImageDescriptor(Object object) {

return AbstractUIPlugin.imageDescriptorFromPlugin(ID,

IImageKeys.MP3);

}

public Object[] getChildren(Object o) {

return new Object[0];

}

};

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 443/24/2009

3/24/2009

23

public Object getAdapter(Object adaptableObject, Class adapterType) {

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3Directory)

return directoryAdapter;

if (adapterType == IWorkbenchAdapter.class

&& adaptableObject instanceof Mp3File)

return entryAdapter;

if (adapterType == IPropertySource.class

&& adaptableObject instanceof Mp3File)

return new Mp3PropertySource((Mp3File)adaptableObject);

return null;

}

public Class[] getAdapterList() {

return new Class[] { IWorkbenchAdapter.class, IPropertySource.class

};

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 453/24/2009

 Loose coupling of domain objects with UI
related objects

 No need to explicitly write ContentProviders
and LabelProviders

 Reuse of

 WorkbenchLabelProvider

 BaseWorkbenchContentProvider

 AdapterFactory might provide several
different adapters like IWorkbenchAdapter or
IPropertySource

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 463/24/2009

3/24/2009

24

 Create a new project
com.siemens.ct.mp3m.mytreeview

 Reuse the tree model from the project
com.siemens.ct.mp3m.model

 Implement a Mp3AdapterFactory with

adapters for all tree model elements
 Create a JFace TreeViewer and test both the
AdapterFactory approach vs. the
standard Label- and ContentProvider
mechanism

473/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Create a IPropertySource
implementation for Mp3File

 Hint: Take a look at Mp3PropertySource

 Add an adapter for IPropertySource and
Mp3File to your Mp3AdapterFactory

 Add the standard Properties View to the
contacts manager application

 Hint: Add the project org.eclipse.ui.views to
your mp3m.product launch configuration

483/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

25

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 493/24/2009

 Challenges in many applications:

 Huge amount of domain specific data has to be
displayed in a tree or table

 Data for the whole tree or table needs either too
much memory or takes too much time to create
upfront (or even both)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 503/24/2009

3/24/2009

26

 Solution:

 Create model data and tree/table items only
when they are really needed (e.g. displayed)

 Keep only the part of the data in memory that is
currently displayed

 Free model data und tree/table items if they are
no longer displayed

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 513/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 523/24/2009

3/24/2009

27

public void createPartControl(Composite parent) {

TableViewer tableViewer =

new TableViewer(parent, SWT.VIRTUAL | SWT.BORDER |

SWT.V_SCROLL);

Table table = tableViewer.getTable();

// …

TableColumn column = new TableColumn(table, SWT.NONE, 0);

column.setText("No");

column.setWidth(50);

tableViewer.setItemCount(100000);

tableViewer.setContentProvider(new LazyContentProvider());

tableViewer.setLabelProvider(new TableLabelProvider());

tableViewer.setUseHashlookup(true);

tableViewer.setInput(null);

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 533/24/2009

class LazyContentProvider implements ILazyContentProvider {

public void inputChanged(Viewer viewer, Object oldInput,

Object newInput) {

this.viewer = (TableViewer) viewer;

this.viewer.getTable().addListener(SWT.SetData, new Listener() {

public void handleEvent(Event event) {

TableItem item = (TableItem) event.item;

// compute top and bottom index and clear portions

// of the table to clean up memory

}

}

}

public void updateElement(int index) {

// get mp3Info from domain model

viewer.replace(new Song(index, mp3Info), index);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 543/24/2009

3/24/2009

28

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 553/24/2009

public void createPartControl(Composite parent) {

treeViewer = new TreeViewer(parent, SWT.VIRTUAL);

treeViewer.setLabelProvider(new WorkbenchLabelProvider());

treeViewer.setContentProvider(

new TreeContentProvider(treeViewer));

treeViewer.setUseHashlookup(true);

Mp3Directory root = new Mp3Directory("root");

// Some initializations…

treeViewer.setInput(root);

treeViewer.setChildCount(root, roots.length);

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 563/24/2009

3/24/2009

29

class TreeContentProvider implements ILazyTreeContentProvider {

public void updateElement(Object parent, int index) {

Mp3Directory parentDir = (Mp3Directory) parent;

Mp3File mp3File = parentDir.getMp3Files()[index];

if (mp3File instanceof Mp3Directory) {

PrefetchModelJob job = new PrefetchModelJob(

"Update Model", parentDir, index,

(Mp3Directory) mp3File);

job.schedule();

}

treeViewer.replace(parent, index, mp3File);

treeViewer.setChildCount(mp3File, 0);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 573/24/2009

 Create a virtual table to display a huge list of
mp3 files

 Hint: replicate the existing mp3s in the table

 Implement a Content Provider that
implements ILazyContent-Provider

 Implement the updateElement() method
properly

583/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

30

 Implement the handleEvent() method in your
LazyContent-Provider to clean up table
elements that are no longer needed

 Hint: Take a look at the class VirtualTableView in
project com.siemens.ct.mp3m.ui.views.logical.

593/24/2009 © Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 603/24/2009

3/24/2009

31

 Product branding gives your application a
specific high-level visual appearance

 Can be used for

 Vendor-specific appearance

 Product families

 Various different editions of the same software
basis

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 613/24/2009

 Launcher’s icon
 Splash screen with progress bar
 Title bar text
 The image the operating system associates

with the product
 About dialog image
 About dialog text
 UI presentation style (see Presentation part)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 623/24/2009

3/24/2009

32

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 633/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 643/24/2009

3/24/2009

33

 Create a new product configuration

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 653/24/2009

 You can create separate branding plug-ins

 Including product configuration

 Including all branding resources and information

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

Blue Branding Orange Branding

663/24/2009

3/24/2009

34

Approach 1:
1. Create a feature for each branding
2. Include all plug-ins, that define your product

in that feature
3. Place the product configuration in that

feature
4. In the product configuration include only the

branding feature!

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 673/24/2009

Approach 2:
1. Create a base feature with your application

base plug-ins
2. Create a separate feature that contains only

the specific branding plug-in
3. Include the application feature in your

branding feature

 Use the “Included Features” tab in the feature.xml
editor

4. In the product configuration include only the
branding feature!

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 683/24/2009

3/24/2009

35

 Useful for internationalize product versions

 Splash screen, images and “about text”

 Can easily be implemented using plug-in
fragments

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 693/24/2009

 Create a file structure in your localized
branding plug-in:

 nl/<locale>/splash.bmp

 When deploying, use a customized config.ini
file, and modify:

 osgi.splashPath=
platform:/base/plugins/<original branding plug-in> ,
platform:/base/plugins/<localized branding plug-in>

 Then both plug-ins are in the splash screen search
path at startup

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 703/24/2009

3/24/2009

36

 Since Eclipse 3.3 there is a new
extension point org.eclipse.ui.splashHandlers

 Available templates

▪ A simulated log-in session

▪ An embedded HTML browser

▪ A dynamic set of image contributions

 Create a SplashHandler Java class

 Extend BasicSplashHandler

 Take a Look at org.eclipse.ui.internal.splash.
EclipseSplashHandler

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 713/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

Product Version in Custom Splash Handler

723/24/2009

3/24/2009

37

 Every feature can refer to a branding plug-in

 The feature’s branding data are in the files
about.ini and about.properties

 For internationalized feature brandings
create plug-in fragments of the branding
plug-in

 Provide the directory structure nl/<locale>

▪ E.g. nl/de

 Provide both about.ini and about.properties for
each locale

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 733/24/2009

 about.ini:

aboutText=%blurb

featureImage=icon32x32.gif

 about.properties:
blurb=MP3 Manager (English)\n\

\n\

Version: {featureVersion} \n\

\n\

(c) Copyright Siemens AG 2008. All rights reserved.

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 743/24/2009

3/24/2009

38

 nl/de/about.ini:

aboutText=%blurb

featureImage=icon32x32_de.gif

 nl/de/about.properties:
blurb=MP3 Manager (Deutsch)\n\

\n\

Version: {featureVersion}\n\

\n\

(c) Copyright Siemens AG 2008. Alle Rechte vorbehalten.

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 753/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 763/24/2009

3/24/2009

39

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

feature brandings in the About dialog

773/24/2009

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 783/24/2009

3/24/2009

40

 Launch the MP3 manager with

 Blue branding

 Orange branding

 Blue branding in German

79© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 803/24/2009

3/24/2009

41

 Looks great
 But: Looks a bit like the Eclipse IDE

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 813/24/2009

 Looks differently compared to the Eclipse IDE
 Customized for better application usability

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 823/24/2009

3/24/2009

42

 Usually RCP apps contain views and editors
 These views and editors are called parts
 The presentation customizes the layout and

Look&Feel of areas containing one or more
parts

 Drawback: Not the whole application's look & feel
can be customized with the Presentations API

 No Look & Feel skinning like in Swing

 Presentation can provide custom widgets and
behavior

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 833/24/2009

 Control layout and visibility of

 Parts

 Menus & Toolbars

 Drag&Drop regions

 Create the Look & Feel for part stacks

 Tabs

 Title

 Buttons (Close, Maximize, Minimize)

 Borders

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 843/24/2009

3/24/2009

43

 Go to “General/Appearance” in the
Preferences

 Choose a presentation (e.g. “2.1 Style”)
 Restart Eclipse

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 853/24/2009

 Create .ini file with content:
org.eclipse.ui/presentationFactoryId=<ID>

 ID is the presentation id, e.g.:
org.eclipse.ui.internal.r21presentationFactory

 Specify program arguments:
-plugincustomization <presentation.ini file>

 Or create default .ini file:
plugin_customization.ini

 Advantage: Will be detected by the launcher
automatically

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 863/24/2009

3/24/2009

44

 A presentation that only displays a part

 No Borders, Tabs, Menus

 Only the top part of the stack is shown

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 873/24/2009

 Create a presentation factory
 Extend org.eclipse.ui.presentationFactories
 Provide class, id and name of your

presentation

<extension

point= "org.eclipse.ui.presentationFactories" >

<factory

class="presentation.MinimalPresentationFactory"

id="presentation.MinimalPresentationFactory"

name="Minimal Presentation"/>

</extension>

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 883/24/2009

3/24/2009

45

public abstract class AbstractPresentationFactory {

public abstract StackPresentation createEditorPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createViewPresentation(
Composite parent, IStackPresentationSite site);

public abstract StackPresentation createStandaloneViewPresentation(
Composite parent, IStackPresentationSite site,
boolean showTitle);

// …
}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 893/24/2009

public class MinimalPresentationFactory

extends AbstractPresentationFactory {

public StackPresentation createEditorPresentation(

Composite parent, IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createViewPresentation(

Composite parent, IStackPresentationSite site) {

return new MinimalPresentation(parent, site);

}

public StackPresentation createStandaloneViewPresentation(

Composite parent, IStackPresentationSite site,

boolean showTitle) {

return new MinimalPresentation(parent, site);

}

}

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 903/24/2009

3/24/2009

46

 Widget hierarchy

 The parts are not children of the presentation!

 Parts and part toolbars are parented by the
workbench

Allows moving parts between stacks

 A presentation should not use the part’s
control

 It should use instead: IPresentablePart.setBounds()
and IPresentablePart.setVisible()

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 913/24/2009

 For details, checkout:

 Eclipse CVS repository

 Host: dev.eclipse.org

 CVS-Root: /cvsroot/eclipse

 Server: pserver

 Project: org.eclipse.ui.examples.presentation

 User: anonymous

 eclipsecon2005-presentationsAPI.ppt slides are
included

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 923/24/2009

3/24/2009

47

 Useful for:

 Corporate design or Look&Feel

 Product branding & product families

 Application usability

 Think of

 Drawing borders, visible focus

 Buttons (Close, Minimize, Maximize)

 Tab Look & Feel

 Menus (System, View and Part)

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 933/24/2009

Design Goals:
 Title area with no icons, but gradient fill
 Image-based close button for closable parts
 Button-like tabs, with whole part width

 Different gradient fills for selections

 Roll-over effect

 Better usability for MP3 Manager application

 Since we have a title area, tabs should only be
visible if there’s more than one tab

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 943/24/2009

3/24/2009

48

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 953/24/2009

 Start the MP3 Manager with

 Default presentation

▪ Hint: presentation id =
org.eclipse.ui.presentations.default

 MP3M presentation

 Eclipse 3.0 presentation

▪ Hint: presentation id = org.eclipse.ui.presentations.r30

96© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

49

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 973/24/2009

 P2 is the new Eclipse provisioning system
 Introduced with version 3.4
 Replaced the old update manager
 Fixes many of the update manager’s flaws
 Has many new features (see next slides)

98© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

50

 Cleaner end-user workflows
 Faster downloads through multi-threadding
 Installers can be run as a regular Java

application or using Java Web Start
 Can manage complete installation

(.exe, .ini, etc.)
 Can manage and update an Eclipse/RCP

instance without running it

99© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

 Automatically picks the best available mirror
 Automatic retry of downloads
 Sharing of plug-ins across multiple eclipse

instances (bundle pooling)
 Easy creation of headless and custom update

user interfaces
 Validates plug-in inter-dependencies

100© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

51

 Common Use Cases:

 Install an RCP application from a p2 repository

 An RCP application uses p2 metadata and artifact
repositories to update itself

101© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

Recipe for p2-enabling the mail demo:

1. Create the mail demo (project p2-maildemo)
2. Create a product configuration p2-

maildemo.product
3. Add 3 plug-ins to both launcher and product

configuration (and added required plug-ins)
- org.eclipse.equinox.p2.exemplarysetup
- org.eclipse.equinox.p2.ui.sdk
- org.eclipse.equinox.simpleconfigurator.manipulator

3/24/2009 102© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

52

5. To get the final update work in the installed
product, it is also necessary to include the
following 3 plug-ins with dependencies in the
product configuration:
- org.eclipse.ecf.provider.filetransfer
- org.eclipse.equinox.p2.touchpoint.eclipse
- org.eclipse.equinox.p2.touchpoint.natives

6. Export the product and the metadata/artifact
repositories to c:/java/RCP/p2-maildemo

3/24/2009 103© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

7. Use the director app to install the mail demo from the repository,
with the following Program arguments:
-application org.eclipse.equinox.p2.director.app.application
-metadataRepository file:c:/java/RCP/p2-maildemo/repository
-artifactRepository file:c:/java/RCP/p2-maildemo/repository
-installIU p2_maildemo.product
-version 1.0.0
-destination c:/java/RCP/p2-maildemo/install
-profile MaildemoProfile
-bundlepool c:/java/RCP/p2-maildemo/install
-profileProperties org.eclipse.update.install.features=true
-p2.os win32
-p2.ws win32
-p2.arch x86
-roaming
-consoleLog

VM arguments:
-Declipse.p2.data.area=c:/java/RCP/p2-maildemo/install/p2

104© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

3/24/2009

53

8. Start the installed mail demo in c:/java/RCP/p2-
maildemo/install

9. Select Help/Software Updates…:
Shows the P2 UI with installed product in
version 1.0.0

10. Now you want to create a new version 1.0.1 of
the product and update the installed version
1.0.0:

11. Update main mail demo plug-in to version 1.0.1
12. Update product version to 1.0.1
13. Export the new product version 1.0.1 in the

SAME location, to update the metadata/artifact
repositories

3/24/2009 105© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

14. But, the installed app 1.0.0 does not find any
updates... So, add the repository
c:/java/RCP/p2-maildemo/repository
manually as a new site => the new version
1.0.1 is displayed and ready for update.

15. When you want to install the update, the P2
dialog tells you correctly: “RCP Product is
already installed, so an update will be
performed instead.”

16. And now, when you click finish, the new
version will be installed properly!!!

3/24/2009 106© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

54

3/24/2009 107© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 P2 Eclipse Wiki:
http://wiki.eclipse.org/Equinox_p2

 Equinox/p2/Adding Self-Update to an RCP
Application:
http://wiki.eclipse.org/Equinox/p2/Adding_Se
lf-Update_to_an_RCP_Application

 Kai Tödter’s blog about p2-enabling of an
RCP application:
http://toedter.com/blog/?p=27

3/24/2009 108© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

http://wiki.eclipse.org/Equinox_p2
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://wiki.eclipse.org/Equinox/p2/Adding_Self-Update_to_an_RCP_Application
http://toedter.com/blog/?p=27

3/24/2009

55

 Take a look at the mp3m.product in the
project com.siemens.ct.mp3m.feature.blue
regarding the dependencies

 Deploy the product and create p2
repositories

 Install the MP3 Manager product using the
director application

 Hint: Use the preconfigured launcher “MP3
Manager Director”

 Add a local p2 repository for update

3/24/2009 109© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Implement new functionality

 Update bundle version

 Update feature version

 Update product version

 Re-deploy the product to the same location
 Update your previously installed MP3

Manager

3/24/2009 110© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

56

 Demo: MP3 Manager
 A modular component architecture
 Loose coupling of views and editors
 Internationalization
 Adapter factories
 Virtual trees and tables
 Product & feature branding
 Presentation API
 p2, the new provisioning
 Headless build

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 1113/24/2009

 PDE build provides the infrastructure for a
headless RCP build

 Many templates and scripts of PDE build can
be re-used for your own headless RCP build

 Unfortunately, setting up an headless RCP
build is not trivial

3/24/2009 112© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

57

3/24/2009 113© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

RCP App

Features

Plug-ins

build.properties

Ant Script
Generator

Ant Scripts

customTargets.xml

Features

Eclipse Platform

Features

Plug-ins

Plug-ins

Products

P2 Repositories

Build Config OutputPDE BuildInput

 The build.properties file specifies common
properties needed for the build:

 product: the location of the product configuration file

 baseLocation: the location of an eclipse install
containing all the pre-built features and plug-ins that
the product requires in features/ and plugins/
subdirectories. The RCP delta pack is mandatory!

 buildDirectory: directory the build will take place in

 configs: list the configurations for which you want
your product to be built

 archivePrefix: the name of the directory of your
product once installed on disk

3/24/2009 114© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

58

 The custom targets are hooks that are
invoked during the build by the main script.

 Examples are:

 clean

 prefetch, postfetch

 preGenerate, postGenerate

 preProcess, postProcess

 preAssemble, postAssemble

 prePackage, postPackage

 test

3/24/2009 115© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Create a new plug-in <namespace>.build for the
build configuration files

 Copy the files build.properties and
customTargets.xml from
plugins/org.eclipse.pde.build\
<version>/templates/headless-build/ into build/

 Edit build/build.properties.

 product

 archivePrefix

 buildDirectory

 baseLocation

 baseos, basews and basearch

3/24/2009 116© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

59

 Precondition for the build: If plug-ins are not fetched
from CVS/Subversion, source plug-ins and features
must be located in the following structure.

buildDirectory/

features/

feature-1/

feature-2/

...

plugins/

plugin-1/

plugin-2/

...

3/24/2009 117© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 To run the build, execute

java -jar <eclipse>/plugins/\
org.eclipse.equinox.launcher_<version>.jar

-application org.eclipse.ant.core.antRunner

-buildfile <eclipse>/plugins/org.eclipse.pde.build_\
<version>/scripts/productBuild/productBuild.xml

3/24/2009 118© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

60

 Add the following properties to the
build.properties:

generate.p2.metadata = true

p2.metadata.repo=file:${buildDirectory}/repo

p2.artifact.repo=file:${buildDirectory}/repo

p2.flavor=tooling

p2.publish.artifacts=true

mp3mVersion=3.4.1

3/24/2009 119© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 Edit/Add the following targets to the
customTargets.xml:

 postBuild

 runDirector

3/24/2009 120© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

61

<target name="postBuild">

<antcall target="gatherLogs" />

<property file="${buildDirectory}/product.version"/>

<mkdir dir="${buildDirectory}/result/tmp" />

<antcall target="run.director">

<param name="p2.director.install.path"

value="${buildDirectory}/result/tmp/eclipse"/>

<param name="p2.os" value="win32"/>

<param name="p2.ws" value="win32"/>

<param name="p2.arch" value="x86"/>

<param name="p2.IU"

value="com.siemens.ct.mp3m.branding.blue.product" />

<param name="p2.version" value="${mp3mVersion}"/>

</antcall>

<zip destfile="${buildDirectory}/result/MP3M-p2-RCP-win32-${mp3mVersion}.zip"

basedir="${buildDirectory}/result/tmp" />

<delete dir="${buildDirectory}/result/tmp" />
</target>

3/24/2009 121© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

<target name="run.director">

<exec executable="${eclipseLocation}/eclipsec" failonerror="false" timeout="900000">

<arg line="-application org.eclipse.equinox.p2.director.app.application" />

<arg line="-nosplash" />

<arg line="--launcher.suppressErrors" />

<arg line="-consoleLog" />

<arg line="-flavor ${p2.flavor}" />

<arg line="-installIU ${p2.IU}" />

<arg line="-version ${p2.version}" />

<arg line="-p2.os ${p2.os}" />

<arg line="-p2.ws ${p2.ws}" />

<arg line="-p2.arch ${p2.arch}" />

<arg line="-roaming" />

<arg line="-profile MP3MProfile" />

<arg line="${p2.director.extraArgs}" />

<arg line="-metadataRepository ${p2.metadata.repo}" />

<arg line="-artifactRepository ${p2.artifact.repo}" />

<arg line="-destination ${p2.director.install.path}" />

<arg line="-bundlepool ${p2.director.install.path}" />

<arg line="-profileProperties org.eclipse.update.install.features=true" />

<arg line="-vmargs" />

<arg line="-Declipse.p2.data.area=${p2.director.install.path}/p2" />

</exec>

<!-- delete the metadata cache as well as the artifacts for unzipped bundles -->

<delete failonerror="false" includeEmptyDirs="true"

dir="${p2.director.install.path}/p2/org.eclipse.equinox.p2.core/cache" />
</target>

3/24/2009 122© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

3/24/2009

62

 Install the RCP delta pack to your target
platform

 Create a new project
com.siemens.ct.mp3m.mybuild

 Create copy the files build.properties,
customtargets.xml and build.xml from
com.siemens.ct.mp3m.build

 Adopt build.properties to your environment
 Run the headless build
 Unzip and run the p2-ed MP3 Manager

3/24/2009 123© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

 http://help.eclipse.org/help32/index.jsp?topic
=/org.eclipse.pde.doc.user/guide/tasks/pde_p
roduct_build.htm

 Andrew Niefer’s blog how to integrate p2 into
the build of an RCP application:
http://aniefer.blogspot.com/2008/06/exampl
e-headless-build-for-rcp-product.html

3/24/2009 124© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.

http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.pde.doc.user/guide/tasks/pde_product_build.htm
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html
http://aniefer.blogspot.com/2008/06/example-headless-build-for-rcp-product.html

3/24/2009

63

© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License. 1253/24/2009

 This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works
3.0 Germany License

 See http://creativecommons.org/licenses/by-nc-
nd/3.0/de/deed.en_US

 Some slides are based on material of the Eclipse Training
Alliance, see http://www.eclipse-training.net

126© Kai Tödter and others, Licensed under Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Germany License.3/24/2009

http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en_US
http://www.eclipse-training.net/
http://www.eclipse-training.net/
http://www.eclipse-training.net/

